

C09-TT-102/C09-RAC-102

3002

BOARD DIPLOMA EXAMINATION, (C-09) MARCH/APRIL—2016 FIRST YEAR (COMMON) EXAMINATION

ENGINEERING MATHEMATICS—I

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries three marks.
- (3) Answers should be brief and straight to the point and shall not exceed *five* simple sentences.
- **1.** Express $4x^2$ 4x 5 in the form of A^2 B^2 .
- **2.** If $p \times y$, $q \times y$, $q \times z$, $r \times z \times z$, find the value of $2p \times 3q$ 6r in terms of x, y, z.
- **3.** Resolve $\frac{1}{(x-1)(x-2)}$ into partial fractions.
- **4.** Find the modulus of $\frac{1}{4 + 3i}$.

/**3002** * 1 [Contd...

- **5.** If $\tan A = \frac{1}{2}$ and $\tan B = \frac{1}{3}$, show that A = B = 45.
- **6.** Show that $\frac{\sin 2}{1 \cos 2}$ cot.
- 7. Find the equation of the polar to the circle x^2 y^2 4x 6y 0 with respect to (2, 5).
- **8.** Find the perpendicular distance from the point (1, 2) to the line 3x + 4y + 5 = 0.
- **9.** Differentiate $\frac{1}{1} \frac{\sin x}{\sin x}$ w.r.t. x.
- **10.** Find Lt $\frac{n^2 + 3n + 4}{n^2 + 4}$.

 $10 \times 5 = 50$

Instructions: (1) Answer any **five** questions.

- (2) Each question carries ten marks.
- (3) Answers should be comprehensive and the criterion for valuation is the content but not the length of the answer.
- **11.** *(a)* Show that

$$\begin{vmatrix} 1 & a & b & c \\ 1 & b & c & a \\ 1 & c & a & b \end{vmatrix} = 0$$

(b) Solve the equations

$$6x \quad y \quad 3z \quad 5$$

 $x \quad 3y \quad 2z \quad 5$
 $2x \quad y \quad 4z \quad 8$

using Cramer's rule.

- **12.** (a) Solve 4 cos 3 sec 2 tan.
 - (b) In any ABC, prove that $c\cos^2\frac{A}{2}$ $a\cos^2\frac{C}{2}$ s.
- **13.** (a) If A B C 180, prove that $\sin 2A \sin 2B \sin 2C 4 \sin A \sin B \sin C$
 - (b) Show that

$$\tan {}^{1}\frac{3}{4} \tan {}^{1}\frac{5}{12} \tan {}^{1}\frac{56}{33}$$

- **14.** (a) Find the equation of hyperbola with centre at origin, y-axis as the conjugate axis and it is of length 8 passing through the point (6, 4).
 - (b) Find the distance between the points (2, 1, 4) and (2, 1, 3).
- **15.** (a) Find the vertex, focus, equation of directrix, equation of axis and length of latus rectum of the parabola represented by the equation $(y \ 3)^2 \ 16(x \ 1)$.
 - (b) Find the equation of the ellipse which passes through the points (1, 3) and (2,2) with axes as coordinate axes.
- **16.** (a) Differentiate x^x w.r.t. x.
 - (b) If $y \sin(\log x)$, show that $x^2y_2 + xy_1 + y = 0$.
- **17.** (a) A wire of length 20 cm is bent to form a rectangle. Find the maximum area the rectangle encloses.
 - (b) If the percentage error in the side of an equilateral triangle is 3.5%, find the absolute error and percentage error in its area when the side is measured as 6/3 cm.
- **18.** (a) Find the lengths of tangent, normal, subtangent and subnormal to the curve $x^2 + y^2 = 9$ at the point (5, 4).
 - (b) Each side of a square increases at the rate of 1.5 cm/sec. Find the rate at which the areas of the square increases when the side is 12 cm.